Respuesta :

Answer: The enthalpy change for the given process is -42.3 kJ/mol

Explanation:

The processes involved in the given problem are:  

[tex]1.)H_2O(g)(100^oC)\rightarrow H_2O(l)(100^oC)\\2.)H_2O(l)(100^oC)\rightarrow H_2O(l)(80^oC)[/tex]

Pressure is taken as constant.

To calculate the amount of heat released at same temperature, we use the equation:

[tex]\Delta H=-L_{v}[/tex]       ......(1)

where,

[tex]\Delta H[/tex] = enthalpy change

[tex]L_{v}[/tex] = latent heat of vaporization

To calculate the amount of heat absorbed at different temperature, we use the equation:

[tex]\Delta H=C_{p,m}\times (T_{2}-T_{1})[/tex]        .......(2)

where,

[tex]\Delta H[/tex] = enthalpy change

[tex]C_{p,m}[/tex] = specific heat capacity of medium

[tex]T_2[/tex] = final temperature

[tex]T_1[/tex] = initial temperature

Calculating the enthalpy for each process:

  • For process 1:

We are given:

[tex]L_v=40.79kJ/mol=40790J/mol[/tex]

Putting values in equation 1, we get:

[tex]\Delta H_1=-40790J/mol[/tex]

  • For process 2:

We are given:

[tex]C_{p,l}=75.3J/mol.^oC\\T_1=100^oC\\T_2=80^oC[/tex]

Putting values in equation 2, we get:

[tex]\Delta H_2=75.3J/mol.^oC\times (80-(100))^oC\\\\\Delta H_2=-1506J/mol[/tex]

Enthalpy change of the reaction = [tex]\Delta H_1+\Delta H_2[/tex]

Enthalpy change of the reaction = [tex][-40790+-1506]J/mol=-42296J/mol=-42.3kJ/mol[/tex]

Hence, the enthalpy change for the given process is -42.3 kJ/mol