The rectangle below has an area of x to the second power minus x minus 72 square meters and a length of x plus 8 meters. What expression represents the width of the rectangle?

Respuesta :

Answer:

[tex]W=(x-9)\ m[/tex]

Step-by-step explanation:

we know that

The area of rectangle is equal to

[tex]A=LW[/tex]

where

L is the length of rectangle

W is the width of rectangle

we have

[tex]A=(x^{2} -x-72)\ m^2[/tex]

[tex]L=(x+8)\ m[/tex]

[tex]W=\frac{A}{L}[/tex]

substitute

[tex]W=\frac{(x^{2} -x-72)}{(x+8)}[/tex]

Solve the quadratic equation in the numerator

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} -x-72=0[/tex]  

so

[tex]a=1\\b=-1\\c=-72[/tex]

substitute in the formula

[tex]x=\frac{-(-1)\pm\sqrt{-1^{2}-4(1)(-72)}} {2(1)}[/tex]

[tex]x=\frac{1\pm\sqrt{289}} {2}[/tex]

[tex]x=\frac{1\pm17} {2}[/tex]

[tex]x=\frac{1+17} {2}=9[/tex]

[tex]x=\frac{1-17} {2}=-8[/tex]

so

[tex]x^{2} -x-72=(x+8)(x-9)[/tex]  

substitute in the expression of W

[tex]W=\frac{(x^{2} -x-72)}{(x+8)}[/tex]

[tex]W=\frac{(x+8)(x-9)}{(x+8)}[/tex]

simplify

[tex]W=(x-9)\ m[/tex]