Answer:
IRR= 23.375%
Explanation:
Given: Cash flow= $1,200,000
Initial investment= $2400000
Lets first compute IRR for Project, assuming rate of return at 23.375% or 0.233.
Formula: [tex]NPV= \frac{cash\ flow}{(1+r)^{n} } -initital\ investment[/tex]
[tex]NPV= \frac{\$ 1,200,000}{(1+0.23375)^{1} }+\frac{\$ 1,200,000}{(1+0.23375)^{2}}+\frac{\$ 1,200,000}{(1+0.23375)^{3}} -\$ 2400000 [/tex]
NPV has to be equal to zero to know if IRR is correct to find if project worth enough to invest.
⇒[tex]NPV= \frac{\$ 1,200,000}{1.23375 }+\frac{\$ 1,200,000}{1.5221}+\frac{\$ 1,200,000}{1.8779390} -\$ 2400000 [/tex]
⇒[tex]NPV= 972644.37+788364.23+638998.36 -\$ 2400000 [/tex]
⇒ [tex]NPV= \$ 2400000 -\$ 2400000 [/tex]
∴ NPV= 0
Hence, 23.375% is the IRR for the project.