Answer:
36.82304 N
[tex]5.54204\times 10^{27}\ m/s^2[/tex]
Explanation:
k = Coulomb's constant = [tex]8.99\times 10^9\ Nm^2/C^2[/tex]
e = Charge of electron = [tex]1.6\times 10^{-19}\ C[/tex]
m = Mass of alpha particles = [tex]4.0026\times 1.66\times 10^{-27}\ kg[/tex]
Charge on alpha particle is given by
[tex]q=2e[/tex]
The force is given by
[tex]F=\dfrac{kq^2}{r^2}\\\Rightarrow F=\dfrac{8.99\times 10^9\times (2\times 1.6\times 10^{-19})^2}{(5\times 10^{-15})^2}\\\Rightarrow F=36.82304\ N[/tex]
The force between the two alpha particles are 36.82304 N
Acceleration is given by
[tex]a=\dfrac{F}{m}\\\Rightarrow a=\dfrac{36.82304}{4.0026\times 1.66\times 10^{-27}}\\\Rightarrow a=5.54204\times 10^{27}\ m/s^2[/tex]
Magnitude of the acceleration of the alpha particles due to this force is given by [tex]5.54204\times 10^{27}\ m/s^2[/tex]