Calculate the voltage of the cell.

Ag(s)|AgBr(s), NaBr(aq, 1.0 M)||CdCl2(aq, 0.050 M)|Cd(s)
AgBr(s) + e- ⇌ Ag(s) + Br-
Eo = 0.071 V
Ag+ + e- ⇌ Ag(s)
Eo = 0.799 V
Cd2+ + 2e- ⇌ Cd(s)
Eo = -0.402 V
Ksp (AgBr(s)) = 5.0 × 10-13

A. -0.678 V
B. -0.511 V
C. -0.423 V
D. 0.511 V

Respuesta :

Answer:

[tex]E_C_e_l_l=-0.511[/tex]

Explanation:

First we have to use the description of the cell and keep in mind that the left part is the oxidation and the right part is the reduction, so:

Ag(s)|AgBr(s), NaBr(aq, 1.0 M)||CdCl2(aq, 0.050 M)|Cd(s)

[tex]Ag_(_s_)~=Ag^+_(_a_q_)~+~e^-[/tex]     Eo = -0.799 V

[tex]Cd^2^+_(_a_q_)~+~2e^-~ =~ Cd_(_s_)[/tex]  Eo = -0.402 V

Then we have to multiply the first semireaction by "2" to obtain the same amount of electrons and add the 2 semireactions, so:

[tex]2Ag_(_s_)~+Cd^2^+_(_a_q_)~=~2Ag^+~+~ Cd_(_s_)[/tex]     Eo = -1.201

Next, using the nerst equation we can calculate the potential of the whole cell:

[tex]E_C_e_l_l=E^{\circ}-\frac{0.0592}{n}~Log~Q[/tex]

[tex]E_C_e_l_l=E^{\circ}-\frac{0.0592}{n}Log\frac{[Ag^+]^2}{[Cd^2^+]}[/tex]

Now, the problem is Q. To calculate the concentrations for Q we have to use the Ksp of AgBr to calculate the free [tex]Ag^+[/tex] concentration, so:

     AgBr(s) <=> Ag+    + Br-

I          ----            0          1.0

C        ----             +x        +x

E        ----               x       1.0+ x

[tex]Ksp=\frac{Products}{reactives}[/tex]

[tex]5x10^-^1^3=[x][1][/tex]

[tex]x=5x10^-^1^3[/tex]

With the concentration of [tex]Ag^+[/tex] and [tex]Cd^+^2[/tex] given by the problem we can calculate Q:

[tex]Q=\frac{[5x10^-^1^3]^2}{[0.05]}=5x10^-^2^4[/tex]

Finally, with the nerst equation we can calculate the total voltage:

[tex]E_C_e_l_l=-1.201}-\frac{0.0592}{2}Log[5x10^-^2^4][/tex]

[tex]E_C_e_l_l=-0.511[/tex]