Answer:
[tex]P(t) = 3810(1.0035)^{t}[/tex]
Step-by-step explanation:
Given:
[tex]P(t) = 3810(1.0005)^{7t}[/tex] -----(1)
Simplifying [tex](1.0005)^{7t}[/tex]
From Law of indices, [tex]x^{mn} = (x^{m})^{n}[/tex]
[tex](1.0005)^{7t}[/tex] = [tex](1.0005^{7})^{t}[/tex]
When 1.0005 is raised to the 7th power, it is approximately 1.0035.
Substituting [tex](1.0005)^{7t} = (1.0035)^{t}[/tex] into equation(1)
[tex] P(t) = 3810(1.0035)^{t}[/tex]