Respuesta :

Answer:

[tex]A'B'=9\ in[/tex]

Step-by-step explanation:

The correct question is

Under a dilation, triangle A(0,0), B(0,3). C(5,0) becomes triangle A'B'C'. The scale factor for this dilation is 3

what is the length of A'B' inches

see the attached figure

we know that

The length of segment A'B' is equal to the length of segment AB multiplied by 3

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

A(0,0), B(0,3)

substitute

[tex]AB=\sqrt{(3-0)^{2}+(0-0)^{2}}[/tex]

[tex]AB=\sqrt{(3)^{2}+(0)^{2}}[/tex]

[tex]AB=3\ in[/tex]

therefore

[tex]A'B'=3(AB)[/tex]

[tex]A'B'=3(3)=9\ in[/tex]

Ver imagen calculista