Force F = (-6.0 N)ihat + (2.0 N) jhatacts on a particle with position vector r =(4.0 m) ihat+ (4.0 m) jhat.
(a) What is the torque on the particle aboutthe origin?
1 N·m ihat+ 2 N·m jhat+ 3 N·m khat

(b) What is the angle between the directions of rand F? (If there is no torque, enter 0.)

Respuesta :

Answer:

[tex]\tau=(-32k)\ N-m[/tex]

[tex]\theta=116.55^{\circ}[/tex]

Explanation:

Given that.

Force acting on the particle, [tex]F=(-6i + 2.0j)\ N[/tex]

Position of the particle, [tex]r=(4i+4j)\ m[/tex]

To find,

(a) Torque on the particle about the origin.

(b) The angle between the directions of r and F

Solution,

(a) Torque acting on the particle is a scalar quantity. It is given by the cross product of force and position. It is given by :

[tex]\tau=F\times r[/tex]

[tex]\tau=(-6i + 2.0j)\times (4i+4j)[/tex]

[tex]\tau=\begin{pmatrix}0&0&-32\end{pmatrix}[/tex]

[tex]\tau=(-32k)\ N-m[/tex]

So, the torque on the particle about the origin is (32 N-m).

(b) Magnitude of r, [tex]|r|=\sqrt{4^2+4^2}=5.65\ m[/tex]

Magnitude of F, [tex]|F|=\sqrt{(-6)^2+2^2}=6.324\ m[/tex]

Using dot product formula,

[tex]F{\circ}\ r=|F|.|r|\ cos\theta[/tex]

[tex]cos\theta=\dfrac{F{\circ} r}{|F|.|r|}[/tex]

[tex]cos\theta=\dfrac{-24+8}{6.324\times 5.65}[/tex]

[tex]\theta=116.55^{\circ}[/tex]

Therefore, this is the required solution.

Answer:

(a) [tex]\overrightarrow{\tau }=32\widehat{K}  Nm[/tex]

(b)  116.6°

Explanation:

[tex]\overrightarrow{F}=-6\widehat{i}+2\widehat{j}[/tex]

[tex]\overrightarrow{r}=4\widehat{i}+4\widehat{j}[/tex]

(a) Torque is defined as

[tex]\overrightarrow{\tau }=\overrightarrow{r}\times \overrightarrow{F}[/tex]

[tex]\overrightarrow{\tau }=\left (4\widehat{i}+4\widehat{j}  \right )\times \left (-6\widehat{i}+2\widehat{j}  \right )[/tex]

[tex]\overrightarrow{\tau }=32\widehat{K}  Nm[/tex]

(b) Let θ be the angle between the r and F.

magnitude of r = [tex]\sqrt{4^{2}+4^{2}}=\sqrt{32}[/tex]

magnitude of F = [tex]\sqrt{6^{2}+2^{2}}=\sqrt{40}[/tex]

[tex]Cos\theta =\frac{\overrightarrow{r}.\overrightarrow{F}}{rF}[/tex]

[tex]Cos\theta =\frac{-24+8}{\sqrt{32\times40}}[/tex]

θ = 116.6°