Respuesta :

Answer:

The 19th term of Arithmetic series is - 2.02  

Step-by-step explanation:

Given as :

The product of 5 terms of a GP = 243

The 3rd term of GP is = 10th term of AP

Let The sum of 19th term of AP = x

Now, According to question

∵ nth term of GP is given by

[tex]g_n[/tex] = a×[tex]r^{n - 1}[/tex]

where a is the first term and n is nth term  and r is the common ratio

So For n = 1

[tex]g_1[/tex] = a×[tex]r^{1 - 1}[/tex]

Or, [tex]g_n[/tex] = a×[tex]r^{0}[/tex]

i.e [tex]g_n[/tex] = a × 1

Or, [tex]g_n[/tex] = a

For n = 2

[tex]g_2[/tex] = a×[tex]r^{2 - 1}[/tex]

Or, [tex]g_n[/tex] = a×[tex]r^{1}[/tex]

i.e [tex]g_n[/tex] = a × r

For n =3

[tex]g_3[/tex] = a×[tex]r^{3 - 1}[/tex]

Or, [tex]g_3[/tex] = a×[tex]r^{2}[/tex]

i.e [tex]g_3[/tex] = a × r²

For n =4

[tex]g_4[/tex] = a×[tex]r^{4 - 1}[/tex]

Or, [tex]g_4[/tex] = a×[tex]r^{3}[/tex]

i.e [tex]g_4[/tex] = a × r³

For n =5

[tex]g_5[/tex] = a×[tex]r^{5 - 1}[/tex]

Or, [tex]g_5[/tex] = a×[tex]r^{4}[/tex]

i.e [tex]g_5[/tex] = a × [tex]r^{4}[/tex]

Now, According to question

product of 5 terms of a GP = 243

So, [tex]g_1[/tex] × [tex]g_2[/tex] × [tex]g_3[/tex] × [tex]g_4[/tex] × [tex]g_5[/tex]  = 243

Or, a × a r × a  r²× a  r³× a [tex]r^{4}[/tex] = 243

Or,  [tex]a^{5}[/tex] ×  [tex]r^{10}[/tex] =  [tex]3^{5}[/tex]

∴, a r² = 3                   ............1

Again

3rd term of GP = 10th term of AP

∵ nth term for AP

Tn = a + (n - 1) r  , where a is first term and r is common difference

So, 10th term of AP

[tex]A_10[/tex] = a + (10 - 1) r

[tex]A_10[/tex] = a + 9 r

∵ [tex]g_3[/tex] = [tex]A_10[/tex]

Or, a r² = a + 9 r

Now, from eq 1

3 = a + 9 r

i.e a + 9 r = 3

Or, [tex]\dfrac{3}{r^{2} }[/tex] + 9 r = 3

Or, 3 + 9 r³ = 3 r²

Or, 9 r³ - 3 r² + 3 = 0

Or, r = - 0.59

and a =  [tex]\dfrac{3}{(-0.59)^{2} }[/tex]

i.e a = 8.6

Now,  19th term of AP

[tex]A_19[/tex] = a + (19 - 1) r

[tex]A_19[/tex] = 8.6 + 18 × (-.59)

∴  [tex]A_19[/tex] = - 2.02

So, The 19th term of Arithmetic series = tex]A_19[/tex] = - 2.02

Hence, The 19th term of Arithmetic series is - 2.02  Answer