Determine whether a figure with the given vertices is a rectangle using the Distance Formula.

A(4, –7), B(4, –2), C(0, –2), D(0, –7)

Respuesta :

Answer:

Distance of AB=Distance of CD

and Distance of BC=Distance of DA

Therefore the opposite sides of rectangle ABCD are congruent to each other

Step-by-step explanation:

Let ABCD be the rectangle

and the points A(4,-7), B(4,-2), C(0,-2), D(0,-7)

Now to verify that the given points can figure as a rectangle by using distance formula

Distance of AB

Let [tex](x_{1},y_{1}) ,(x_{2},y_{2})[/tex] be the points A(4,-7), B(4,-2)

[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

[tex]d=\sqrt{(4-4)^2+(-2-(-7))^2}[/tex]

[tex]d=\sqrt{(0)^2+(5)^2}[/tex]

[tex]d=\sqrt{(5)^2}[/tex]

Therefore d=5units

Distance of BC

Let [tex](x_{1},y_{1}) ,(x_{2},y_{2})[/tex] be the points  B(4,-2) and C(0,-2)

[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

[tex]d=\sqrt{(0-4)^2+(-2-(-2))^2}[/tex]

[tex]d=\sqrt{(-4)^2+(0)^2}[/tex]

[tex]d=\sqrt{16}[/tex]

Therefore d=4units

Distance of CD

Let [tex](x_{1},y_{1}) ,(x_{2},y_{2})[/tex] be the points  C(0,-2) and D(0,-7)

[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

[tex]d=\sqrt{(0-0)^2+(-7-(-2))^2}[/tex]

[tex]d=\sqrt{(0)^2+(-5)^2}[/tex]

[tex]d=\sqrt{25}[/tex]

Therefore d=5units

Distance of DA

Let [tex](x_{1},y_{1}) ,(x_{2},y_{2})[/tex] be the points  D(0,-7) and A(4,-7)

[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

[tex]d=\sqrt{(4-0)^2+(-7-(-7))^2}[/tex]

[tex]d=\sqrt{(4)^2+(0)^2}[/tex]

[tex]d=\sqrt{16}[/tex]

Therefore d=4units

Therefore Distance of AB=Distance of CD

and Distance of BC=Distance of DA

Therefore the opposite sides of rectangle ABCD are congruent to each other