Respuesta :

Cos 2 A = [tex]\frac{7}{25}[/tex] for the given.

Step-by-step explanation:

Given:

          [tex]\cos A=-\frac{4}{5}[/tex]

We know the formula,

          [tex]\cos ^{2} A+\sin ^{2} A=1[/tex]

          [tex]\sin ^{2} A=1-\cos ^{2} A[/tex]

          [tex]\sin ^{2} A=1-\left(-\frac{4}{5}\right)^{2}=1-\frac{16}{25}=\frac{25-16}{25}=\frac{9}{25}[/tex]

Taking square root, we get

          [tex]\sin A=\sqrt{\frac{9}{25}}=\pm \frac{3}{5}[/tex]

Hence,

          [tex]\sin A=+\frac{3}{5} \text { and } \sin A=-\frac{3}{5}[/tex]

Given as ‘A’ is in second quadrant, so sine value is positive. Therefore,

          [tex]\sin A=+\frac{3}{5}[/tex]

The formula for Cos 2 A is given as

          [tex]\cos 2 A=\cos ^{2} A-\sin ^{2} A[/tex]

Substitute the values, we get

         [tex]\cos 2 A=\left(-\frac{4}{5}\right)^{2}-\left(+\frac{3}{5}\right)^{2}[/tex]

         [tex]\cos 2 A=\frac{16}{25}-\frac{9}{25}=\frac{16-9}{25}=\frac{7}{25}[/tex]