Respuesta :

Answer:

The Proof is below.

Step-by-step explanation:

Given:

[tex]\overline {LP} \cong \overline{NP}[/tex]

[tex]\overline {ML} \cong \overline{MN}[/tex]

To Prove:

[tex]\overline {LQ} \cong \overline{QN}[/tex]

Proof:

In  ΔLPM  and ΔNPM  

[tex]\overline {LP} \cong \overline{NP}[/tex]  ……….{Given}

[tex]\overline {ML} \cong \overline{MN}[/tex]  ……….{Given}

[tex]\overline {LP} \cong \overline{NP}[/tex]  ……….{Reflexive Property}

ΔLPM ≅ ΔNPM      ….{ By Side-Side-Side congruence test}

∴ ∠LMP ≅ ∠NMP  ...{Corresponding parts of congruent triangles (c.p.c.t).}.....( 1 )

Now In ΔLMQ  and ΔNMQ  

[tex]\overline {ML} \cong \overline{MN}[/tex]  ……….{Given}

∠LMQ ≅ ∠NMQ                                 ..........{From 1 above}

[tex]\overline {MQ} \cong \overline{MQ}[/tex]  ……….{Reflexive Property}

ΔLMQ ≅ ΔNMQ         ....{ By Side-Angle-Side Congruence test}

∴ [tex]\overline {LQ} \cong \overline{QN}[/tex] ...{Corresponding parts of congruent triangles (c.p.c.t).}.....Proved