Answer:
The maximum value of C is 68
Step-by-step explanation:
we have the following constraints
[tex]x\geq 0[/tex] ----> constraint A
[tex]x\leq 5[/tex] ----> constraint B
[tex]y\geq 0[/tex] ----> constraint C
[tex]4x-y\geq 1[/tex] ----> constraint D
Find out the area of the feasible region, using a graphing tool
The vertices of the feasible region are
(0,0),(5,19),(5,0)
see the attached figure
To find out the maximum value of the objective function C, substitute the value of x and the value of y of each vertex in the objective function and then compare the results
[tex]C=6x+2y[/tex]
For (0,0) -----> [tex]C=6(0)+2(0)=0[/tex]
For (5,19) -----> [tex]C=6(5)+2(19)=68[/tex]
For (5,0) -----> [tex]C=6(5)+2(0)=30[/tex]
therefore
The maximum value of C is 68