Respuesta :

Answer:

The maximum value of C is 68

Step-by-step explanation:

we have the following constraints

[tex]x\geq 0[/tex] ----> constraint A

[tex]x\leq 5[/tex] ----> constraint B

[tex]y\geq 0[/tex] ----> constraint C

[tex]4x-y\geq 1[/tex] ----> constraint D

Find out the area of the feasible region, using a graphing tool

The vertices of the feasible region are

(0,0),(5,19),(5,0)

see the attached figure

To find out the maximum value of the objective function C, substitute the value of x and the value of y of each vertex in the objective function and then compare the results

[tex]C=6x+2y[/tex]

For (0,0) -----> [tex]C=6(0)+2(0)=0[/tex]

For (5,19) -----> [tex]C=6(5)+2(19)=68[/tex]

For (5,0) -----> [tex]C=6(5)+2(0)=30[/tex]

therefore

The maximum value of C is 68

Ver imagen calculista