Respuesta :

Answer:

[tex]k= \frac{-34}{3}[/tex]

Step-by-step explanation:

Step 1 :-

Perpendicular condition :-

Step 1:-

Two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.

[tex]m_{2} = \frac{-1}{m_{1} }[/tex]

[tex]m_{1} m_{2} = -1[/tex]

Step 2:-

The given points are (-8,k) and (-4,-8)

[tex]m_{1} = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  }[/tex]

finding slope of the first line is [tex]m_{1}[/tex]

using formula [tex]m_{1} = \frac{-8-k}{-4+8}[/tex]

=  [tex]\frac{-8-k}{4}[/tex]

finding slope of the second line is [tex]m_{2}[/tex]

using formula [tex]m_{2} = \frac{--5+11}{5-10}[/tex]

=  [tex]\frac{6}{-5}[/tex]

Step 3:-

using perpendicular condition

The two lines are perpendicular and their slopes are

[tex]m_{1} m_{2} = -1[/tex]

[tex](\frac{-k-8}{4} )(\frac{-6}{5} )= -1[/tex]

simplification,we get solution is

[tex]\frac{6(k+8)}{20} =-1[/tex]

[tex]6 k+48 =-20[/tex]

[tex]6 k = -20 -48[/tex]

[tex]6 k = -68[/tex]

[tex]\frac{-68}{6}[/tex]

[tex]k= \frac{-34}{3}[/tex]

Final answer is

[tex]k= \frac{-34}{3}[/tex]