Answer:
The simplified value of the given linear expression is 8 x + 5
Step-by-step explanation:
Given as :
The linear expression is
[tex]\dfrac{1}{2}[/tex] × (14 x - 2) - [tex]\dfrac{1}{4}[/tex] × ( - 4 x - 24 )
Now, Simplifying the equation
taking common 2 and 4
[tex]\dfrac{1}{2}[/tex] ×[ 2× (7 x - 1)] - [tex]\dfrac{1}{4}[/tex] ×[4× ( - x - 6 )]
Or, [tex]\dfrac{2}{2}[/tex] ×[(7 x - 1)] - [tex]\dfrac{4}{4}[/tex] ×[( - x - 6 )]
Or, 1 ×[(7 x - 1)] - 1 ×[( - x - 6 )]
Or, 7 x - 1 + x + 6
Or, (7 x + x) + ( - 1 + 6)
Or, 8 x + ( 5)
Or, 8 x + 5
So, The simplified value of the given linear expression is 8 x + 5 . Answer