contestada

translate the system of equations. Two integers have a sum of -10 and a difference of 38.
What are the integers ​

Respuesta :

znk

Answer:

[tex]\large \boxed{x = 14; y = -24}[/tex]

Step-by-step explanation:

1. Translate

x and y = two integers

x + y  = the sum of two integers

x  -  y = the difference between two integers Then,

x + y = -10 and

x  -  y = 38

2. Solve

[tex]\begin{array}{rcrl}(1) \qquad x + y & = & -10&\\(2) \qquad x - y & = &38&\\(3) \qquad \quad 2x & = &28&\text{Added (1) and (2)}\\(4) \qquad \qquad x & = & \mathbf{14}&\text{Divided (3) by 2}\\ 14 + y & = & -10&\text{Subtituted (4) into (1)}\\y & = &\mathbf{-24}& \text{Subtracted 14 from each side}\\\end{array}\\\text{The integers are $\large \boxed{\mathbf{x = 14; y = -24}}$}[/tex]

3. Check:

[tex]\begin{array}{ccc}14 + (-24) = -10 & \qquad & 14 - (-24) = 38\\14 - 24 = -10 & \qquad & 14 + 24 = 38\\-10 = -10 & \qquad & 38 = 38\\\end{array}[/tex]

OK