Respuesta :

Answer:

[tex]m\angle \mathrm{AED}=\frac{3 \pi}{5}[/tex]

Step-by-step explanation:

Given radius = 5 units, arc length of BA = π, arc length of CD = 3π

Circumference of a circle = 2πr

                                          = 2π(5)

                                          = 10π

To find the arc measure of BA:

[tex]$\frac{\text { arc length }}{\text { circumference }}=\frac{\text { arc measure }}{\text { radians in a circle }}$[/tex]

[tex]\Rightarrow \frac{\pi}{10 \pi}=\frac{\text { arc measure }}{2 \pi}[/tex]  

⇒ arc measure = [tex]\frac{\pi}{5}[/tex]

To find the arc measure of CD:

[tex]$\frac{\text { arc length }}{\text { circumference }}=\frac{\text { arc measure }}{\text { radians in a circle }}$[/tex]  

[tex]\Rightarrow \frac{3\pi}{10 \pi}=\frac{\text { arc measure }}{2 \pi}[/tex]  

⇒ arc measure = [tex]\frac{\pi}{5}[/tex])  

⇒ arc measure = [tex]\frac{3 \pi}{5}[/tex]

The measure of an inscribed angle is half of the measure of the arc it intercepts.

arc measure of BA = [tex]\frac{\pi}{5}[/tex], then [tex]\mathrm{m} \angle \mathrm{BCA}=\frac{\pi}{10}=0.1 \pi[/tex]

Similarly, arc measure of CD = [tex]\frac{3 \pi}{5}[/tex], then [tex]\mathrm{m} \angle \mathrm{CBD}=\frac{3 \pi}{10}=0.3 \pi[/tex]

We know that sum of the interior angles of a triangle BCE = π

0.1π + 0.3π + m∠BEC = π

[tex]\Rightarrow \mathrm{m} \angle \mathrm{BEC}=0.6 \pi[/tex]

[tex]\mathrm{m} \angle \mathrm{BEC}=\mathrm{m} \angle \mathrm{AED}[/tex] (by vertical angle theorem)

Hence, the measure of [tex]\angle \mathrm{AED}=\frac{3 \pi}{5}[/tex].