Respuesta :
Answer:
a) [tex] total capacity = (Block size + I. Gap size)*N[/tex]
[tex] total capacity = (512+128 Bytes)* 20= 12800 Bytes = 12.8 Kb[/tex]
[tex] Useful.cap = Block size * N = 512*20 = 10240 Bytes = 10.24 Hb[/tex]
b) [tex] Cylinders
c) [tex] T = (512+128 Gb) *20 *15*2 = 384000 Bytes= 384Kb[/tex]
[tex] U = 512Gb*20*15*2= 307200 Bytes= 307.2 Kb[/tex]
d) [tex]TS= 384000 Bytes *400 =153600000 Bytes= 153500 Kb= 153. 6Mb[/tex]
[tex]UT = 307200 Bytes*400=122880000 Bytes = 122880 Kb = 122.88 Mb[/tex]
e) [tex] RS= 2400 rpm * \frac{60 s}{1 min}= 144000 rps[/tex]
[tex] Tr= \frac{total capacity}{RS} = \frac{12800 By}{144000 rps}= 0.0889 bytes/s[/tex]
And if we convert using 1 s = 1000 ms we have"
[tex] 0.0889 bytes/s * 1000 =88.89 bytes/ms[/tex]
The block transfer time btt would be given by:
[tex] btt= \frac{512 bytes}{88.9 bytes/ms}=5.76 ms[/tex]
And the average rotational delay would be given by:
[tex] rd= \frac{1}{2} (\frac{1}{2400 rpm}) 60 s \frac{1000 ms}{1 s}= 12.5 ms[/tex]
f) For this case we can calculate the average time to locate and transfer adding the following time:
[tex] TT= btt +rd+ st = 5.76 +12.5 +30 ms= 48.26 ms[/tex]
g) For this case we can calculate the time to transfer 20 random blocks like this:
[tex] t_1 = 20*(s+rd+btt) = 20*(30+12.5+5.76) =965.2 ms[/tex]
And the time to transfer 20 consecutive blocks using double buffering would be:
[tex] t_2 = s+ rd+ 20 btt = 30 +12.5 + 20 (5.76)=157.7 ms[/tex]
Explanation:
Part a
For this case we need to calculate first the total capcity like this:
[tex] total capacity = (Block size + I. Gap size)*N[/tex]
Where N represent the number of blocs per track, and if we replace we got:
[tex] total capacity = (512+128 Bytes)* 20= 12800 Bytes = 12.8 Kb[/tex]
And the useful capacity is given by:
[tex] Useful.cap = Block size * N = 512*20 = 10240 Bytes = 10.24 Hb[/tex]
Part b
For this case the number of cylinders correspond to the number of tracks.
[tex] Cylinders = tracks= 400[/tex]
Part c
First we can calculate the total cylinder capacity like this:
[tex] T = (512+128 Gb) *20 *15*2 = 384000 Bytes= 384Kb[/tex]
And the useful capacity is:
[tex] U = 512Gb*20*15*2= 307200 Bytes= 307.2 Kb[/tex]
Part d
We can calculate the totals like on part d but we just need to multiply by 400 since that represent the number of tracks per surface
[tex]TS= 384000 Bytes *400 =153600000 Bytes= 153500 Kb= 153. 6Mb[/tex]
[tex]UT = 307200 Bytes*400=122880000 Bytes = 122880 Kb = 122.88 Mb[/tex]
Part e
For this case we can convert the revolution per minute in revolutions per second like this:
[tex] RS= 2400 rpm * \frac{60 s}{1 min}= 144000 rps[/tex]
And we can calculate the transfer rate like this:
[tex] Tr= \frac{total capacity}{RS} = \frac{12800 By}{144000 rps}= 0.0889 bytes/s[/tex]
And if we convert using 1 s = 1000 ms we have"
[tex] 0.0889 bytes/s * 1000 =88.89 bytes/ms[/tex]
The block transfer time btt would be given by:
[tex] btt= \frac{512 bytes}{88.9 bytes/ms}=5.76 ms[/tex]
And the average rotational delay would be given by:
[tex] rd= \frac{1}{2} (\frac{1}{2400 rpm}) 60 s \frac{1000 ms}{1 s}= 12.5 ms[/tex]
Part f
For this case we can calculate the average time to locate and transfer adding the following time:
[tex] TT= btt +rd+ st = 5.76 +12.5 +30 ms= 48.26 ms[/tex]
Part g
For this case we can calculate the time to transfer 20 random blocks like this:
[tex] t_1 = 20*(s+rd+btt) = 20*(30+12.5+5.76) =965.2 ms[/tex]
And the time to transfer 20 consecutive blocks using double buffering would be:
[tex] t_2 = s+ rd+ 20 btt = 30 +12.5 + 20 (5.76)=157.7 ms[/tex]