A certain substance X has a normal freezing point of -10.1 degree C and a molal freezing point depression constant Kf = 5.32 °C.kg. mol^-1. Calculate the freezing point of a solution made of 29.82 g of urea ((NH2)2CO) dissolved in 500.

Respuesta :

Answer : The freezing point of a solution is [tex]-15.4^oC[/tex]

Explanation : Given,

Molal-freezing-point-depression constant [tex](K_f)[/tex] = [tex]5.32^oC/m[/tex]

Mass of urea (solute) = 29.82 g

Mass of solvent = 500 g  = 0.500 kg

Molar mass of urea = 60.06 g/mole

Formula used :  

[tex]\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of urea}}{\text{Molar mass of urea}\times \text{Mass of solvent in Kg}}[/tex]

where,

[tex]\Delta T_f[/tex] = change in freezing point

[tex]\Delta T_s[/tex] = freezing point of solution = ?

[tex]\Delta T^o[/tex] = freezing point of solvent = [tex]-10.1^oC[/tex]

i = Van't Hoff factor = 1 (for urea non-electrolyte)

[tex]K_f[/tex] = freezing point constant = [tex]5.32^oC/m[/tex]

m = molality

Now put all the given values in this formula, we get

[tex]-10.1^oC-T_s=1\times (5.32^oC/m)\times \frac{29.82g}{60.06g/mol\times 0.500kg}[/tex]

[tex]T_s=-15.4^oC[/tex]

Therefore, the freezing point of a solution is [tex]-15.4^oC[/tex]