Respuesta :

Answer:

[tex]7^{\frac{2}{5}}[/tex]

Step-by-step explanation:

Step 1: First apply radical rule in the given expression.

[tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]

Here, [tex]\sqrt[3]{7}=7^{\frac{1}{3}}, \sqrt[5]{7}=7^{\frac{1}{5}}[/tex]

The expression becomes [tex]\frac{\sqrt[3]{7}}{\sqrt[5]{7}}=\frac{7^{\frac{1}{3}}}{7^{\frac{1}{5}}}[/tex]  

Step 2: Now, apply exponent rule in the above expression

[tex]\frac{x^{m}}{x^{n}}=x^{m-n}[/tex]  

So, the expression becomes, [tex]7^{\left(\frac{1}{3}-\frac{1}{5}\right)}[/tex].

Step 3: Take cross multiply the denominator and numerator of the fraction in the power of 7.

[tex]\Rightarrow 7^{\left(\frac{1}{3}-\frac{1}{5}\right)}=7^{\left(\frac{5-3}{15}\right)}=7^{\frac{2}{5}}[/tex]

The answer is [tex]7^{\frac{2}{5}}[/tex].

Hence the simplified form of [tex]\frac{\sqrt[3]{7}}{\sqrt[5]{7}}=7^{\frac{2}{5}}[/tex].