Respuesta :

Answer:

[tex]2 a^{2} b^{2}[/tex]

Step-by-step explanation:

Step 1: The given expression is 2·a·b·a·b.

Dot represents multiplication.

Step 2: To simplify the expression, arrange like terms into one group

2·a·b·a·b = 2·(a·a)·(b·b)

Step 3: Law of exponents: [tex]x^{m} \cdot x^{n}=x^{m+n}[/tex]

Using the law of exponents formula, we get

2·(a·a)·(b·b)  = [tex]2 a^{(1+1)} b^{(1+1)}[/tex]

                  = [tex]2 a^{2} b^{2}[/tex]

Therefore, 2·(a·a)·(b·b)  = [tex]2 a^{2} b^{2}[/tex]

Hence, the simplified form of 2·(a·a)·(b·b)  is [tex]2 a^{2} b^{2}[/tex].