Answer:
[tex]2 a^{2} b^{2}[/tex]
Step-by-step explanation:
Step 1: The given expression is 2·a·b·a·b.
Dot represents multiplication.
Step 2: To simplify the expression, arrange like terms into one group
2·a·b·a·b = 2·(a·a)·(b·b)
Step 3: Law of exponents: [tex]x^{m} \cdot x^{n}=x^{m+n}[/tex]
Using the law of exponents formula, we get
2·(a·a)·(b·b) = [tex]2 a^{(1+1)} b^{(1+1)}[/tex]
= [tex]2 a^{2} b^{2}[/tex]
Therefore, 2·(a·a)·(b·b) = [tex]2 a^{2} b^{2}[/tex]
Hence, the simplified form of 2·(a·a)·(b·b) is [tex]2 a^{2} b^{2}[/tex].