Answer:
They will refinance and by using half the amount saved they will end up with a value of $225,017.41 at the end of the mortage in their saving account.
Explanation:
House 250,000
downpayment 15% of 250,000 = 37,500
balance 212,500
over 30 years at 7.75% compounded monthly.
monthly payment:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV 212,500
time 360 (30 years x 12 month per year)
rate 0.006458333 (7.75% over 12 month per year)
[tex]212500 \div \frac{1-(1+0.00645833)^{-360} }{0.00645833} = C\\[/tex]
C $ 1,522.376
Balance after 5 year:
PV of the monthly payment at mortgage rate
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 1,522.38
time 300
rate 0.006458333
[tex]1522.376 \times \frac{1-(1+0.00645833333333333)^{-300} }{0.00645833333333333} = PV\\[/tex]
PV $201,551.4404
they will refinance 201,551.44 at 3.5%
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV 201,551
time 300
rate 0.002916667
[tex]201551.44 \div \frac{1-(1+0.00291667)^{-300} }{0.00291667} = C\\[/tex]
C $ 1,009.014
Difference: 1,522 - 1,009 = 513 dollars
From which they invest half this amount at 7.25% compounded monthly
The future value of this invesmtent will be of:
[tex]C \times \frac{(1+r)^{time} -1}{rate} = FV\\[/tex]
C 256.50
time 300
rate 0.00625
[tex]256.5 \times \frac{(1+0.00625)^{300} -1}{0.00625} = FV\\[/tex]
FV $225,017.4136