In a diesel engine, the piston compresses air at 305 K to a volume that is one-sixteenth of the original volume and a pressure that is 48.5 times the original pressure.What is the temperature of the air after the compression?

Respuesta :

Answer:924.53 K

Explanation:

Given

gas is compressed to one-sixteen of the original volume

i.e. if [tex]V_1[/tex] is the initial volume then [tex]V_2=\frac{V_1}{16}[/tex]

Also Pressure is increased to 48.5 times of original value

i.e. [tex]P_2=48.5 P_1[/tex]

[tex]T_1=305\ K[/tex]

using [tex]PV=nRT[/tex]

[tex]P_1V_1=nRT_1-----1[/tex]

after the compression

[tex]P_2V_2=nRT_2[/tex]

[tex]48.5P_1\times \frac{V_1}{16}=nRT_2------2[/tex]

Divide 1 and 2 we get

[tex]\frac{16}{48.5}=\frac{T_1}{T_2}[/tex]

[tex]T_2=\frac{48.5}{16}\times T_1[/tex]

[tex]T_2=924.53\ K[/tex]

Ver imagen nuuk