Respuesta :
Answer:
[tex]13.83928\times 10^{-6}\ F[/tex]
[tex]249.10704\times 10^{-6}\ J[/tex]
[tex]137.89848\times 10^{-6}\ J[/tex]
[tex]111.20842\times 10^{-6}\ J[/tex]
2.98273 V
Explanation:
[tex]C_1=25\ mu F[/tex]
[tex]C_2=31\ mu F[/tex]
V = Voltage = 6 V
Equivalent capacitance is given by
[tex]\dfrac{1}{C}=\dfrac{1}{C_1}+\dfrac{1}{C_2}\\\Rightarrow C=\dfrac{C_1C_2}{C_1+C_2}\\\Rightarrow C=\dfrac{25\times 10^{-6}\times 31\times 10^{-6}}{(25+31)\times 10^{-6}}\\\Rightarrow C=13.83928\times 10^{-6}\ F[/tex]
Equivalent capacitance is [tex]13.83928\times 10^{-6}\ F[/tex]
Energy stored is given by
[tex]E=\dfrac{1}{2}CV^2\\\Rightarrow E=\dfrac{1}{2}\times 13.83928\times 10^{-6}\times 6^2\\\Rightarrow E=249.10704\times 10^{-6}\ J[/tex]
Total energy stored is [tex]249.10704\times 10^{-6}\ J[/tex]
Charge is given by
[tex]Q=CV\\\Rightarrow Q=13.83928\times 10^{-6}\times 6\\\Rightarrow Q=83.03568\times 10^{-6}\ C[/tex]
Voltage is given by
[tex]V_1=\dfrac{Q}{C_1}\\\Rightarrow V_1=\dfrac{83.03568\times 10^{-6}}{25\times 10^{-6}}\\\Rightarrow V_1=3.3214272\ V[/tex]
[tex]E_1=\dfrac{1}{2}C_1V_1^2\\\Rightarrow E_1=\dfrac{1}{2}\times 25\times 10^{-6}\times 3.3214272^2\\\Rightarrow E_1=137.89848\times 10^{-6}\ J[/tex]
Energy strored in C1 is [tex]137.89848\times 10^{-6}\ J[/tex]
[tex]V_2=\dfrac{Q}{C_2}\\\Rightarrow V_2=\dfrac{83.03568\times 10^{-6}}{31\times 10^{-6}}\\\Rightarrow V_2=2.67857\ V[/tex]
[tex]E_2=\dfrac{1}{2}C_2V_2^2\\\Rightarrow E_2=\dfrac{1}{2}\times 31\times 10^{-6}\times2.67857^2\\\Rightarrow E_2=111.20842\times 10^{-6}\ J[/tex]
Energy stored in C2 is [tex]111.20842\times 10^{-6}\ J[/tex]
[tex]E=E_1+E_2\\\Rightarrow E=137.89848\times 10^{-6}+111.20842\times 10^{-6}\\\Rightarrow E=249.107\times 10^{-6}\ J[/tex]
So, the energy is equivalent
Equivalent capacitance
[tex]C=C_1+C_2\\\Rightarrow C=25+31\\\Rightarrow C=56\times 10^{-6}\ F[/tex]
[tex]E=\dfrac{1}{2}CV^2\\\Rightarrow V=\sqrt{\dfrac{2E}{C}}\\\Rightarrow V=\sqrt{\dfrac{2\times 249.107\times 10^{-6}}{56\times 10^{-6}}}\\\Rightarrow V=2.98273\ V[/tex]
The voltage would be 2.98273 V