Respuesta :
Explanation:
The equation for osmotic pressure, which is:
[tex]\pi=icRT[/tex]
where,
[tex]\pi[/tex] = osmotic pressure of the solution
i = Van't hoff factor
c = concentration of solute
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature of the solution
a). Solution A: 0.10M NaCl(aq) , Solution B: 0.10M KBr (aq)
Solution A: 0.10M NaCl(aq)
i = 2, (100% dissociation for electrolytes)
T = 20°C= 20 + 273 K = 293 K
c = 0.10 M
[tex]\pi=2\times 0.10 M\times 0.0821 \text{ L atm}mol^{-1}K^{-1}\times 293 K[/tex]
[tex]\pi=4.81 atm[/tex]
Solution B: 0.10M KBr(aq)
i = 2, (100% dissociation for electrolytes)
T = 20°C= 20 + 273 K = 293 K
c = 0.10 M
[tex]\pi '=2\times 0.10 M\times 0.0821 \text{ L atm}mol^{-1}K^{-1}\times 293 K[/tex]
[tex]\pi '=4.81 atm[/tex]
[tex]\pi=\pi '=4.81 atm[/tex] (no flow of water will occur)
b). Solution A: 0.10M [tex]Al(NO_3)_3[/tex] , Solution B: 0.20M [tex]NaNO_3[/tex]
Solution A: 0.10M [tex]Al(NO_3)_3[/tex]
i = 4, (100% dissociation for electrolytes)
T = 20°C= 20 + 273 K = 293 K
c = 0.10 M
[tex]\pi=4\times 0.10 M\times 0.0821 \text{ L atm}mol^{-1}K^{-1}\times 293 K[/tex]
[tex]\pi=9.62 atm[/tex]
Solution B: 0.10M [tex]NaNO_3[/tex]
i = 2, (100% dissociation for electrolytes)
T = 20°C= 20 + 273 K = 293 K
c = 0.10 M
[tex]\pi '=2\times 0.10 M\times 0.0821 \text{ L atm}mol^{-1}K^{-1}\times 293 K[/tex]
[tex]\pi '=4.81 atm[/tex]
[tex]\pi > \pi '[/tex]
Flow of water will occur from solution B to solution A.
c). Solution A: 0.10M [tex]CaCl_2[/tex] , Solution B: 0.50M [tex]CaCl_2[/tex]
Solution A: 0.10M [tex]CaCl_2[/tex]
i = 3, (100% dissociation for electrolytes)
T = 20°C= 20 + 273 K = 293 K
c = 0.10 M
[tex]\pi=3\times 0.10 M\times 0.0821 \text{ L atm}mol^{-1}K^{-1}\times 293 K[/tex]
[tex]\pi=7.21atm[/tex]
Solution B: 0.50M [tex]CaCl_2[/tex]
i = 3, (100% dissociation for electrolytes)
T = 20°C= 20 + 273 K = 293 K
c = 0.50 M
[tex]\pi '=3\times 0.50 M\times 0.0821 \text{ L atm}mol^{-1}K^{-1}\times 293 K[/tex]
[tex]\pi '=36.08atm[/tex]
[tex]\pi < \pi '[/tex]
Flow of water will occur from solution A to solution B.