Consider the viscosity versus shear rate data provided below. Fit these data using a power law model η = K ( ∂vx / ∂y) n‐1 , where K and n are constants. What values of K and n correspond to your fitting (provide the appropriate units)?

Respuesta :

Answer:

The value of K is 90461 Pa·s^(0.456) and the value of n is 0.456 (with no units).

Compleated data:

η              ∂vx / ∂y

0,02 750000

0,05 450000

0,1        350000

0,2        200000

0,5        130000

1         100000

2         60000

5         35000

10          28000

20           17000

50          10000

100            8000

Step-by-step explanation:

To solve this problem we can use a Least Squares Approximation with a power function to approximate the data sample.

In this case, we have to do some mathematical work to linearize the function.

For the function selected:

[tex]\eta=K(\partial v_x/\partial y)^{n-1}\\ln(\eta)=ln(K(X)^{m})=ln(K)+ln((\partial v_x/\partial y)^{n-1})\\ln(\eta)=ln(K)+(n-1)ln((\partial v_x/\partial y))[/tex]

Now we can do the next change of variables:

[tex]ln(\eta)=Y\\ln(K)=C\\(n-1)=m\\ln((\partial v_x/\partial y))=X\\[/tex]

Therefore:

[tex]Y=C+mX[/tex]

the matrix resultant of Least Squares Approximation with the data above is:

[tex]Y=\left[\begin{array}{c}-3.91&-3&-2.3\\-1.61&-0.69&0\\0.69&1.61&2.3\\3&3.91&4.61\end{array}\right][/tex] and [tex]\left[\begin{array}{cc}1&13.53\\1&13.02\\1&12.77\\1&12.21\\1&11.78\\1&11.51\\1&11\\1&10.46\\1&10.24\\1&9.74\\1&9.21\\1&8.99\end{array}\right] \cdot \left[\begin{array}{c}C&M\end{array}\right]=A\cdot x[/tex]

We then solve the equation:

[tex]A\cdot x=Y\\A^tA\cdot x=A^tY=b[/tex]

Solving this system of 2x2, we obtain:

C=11.4126741 and m=-0.544

Therefore

[tex]C=11.4126741=ln(K)\rightarrow K=90461\\m=-0.544=(n-1)\rightarrow n=0.456[/tex]

Knowing that the viscosity has as units Pa·s and the shear rate s⁻¹, the units of the constant k is:

[tex]K=90461 Pa\cdot s^{0.456}\\[/tex]

The constant n has no units.

Answer and Step-by-step explanation

η = K ((∂Vx / ∂y)^(n-1))

-Take the natural logarithm of both sides

In η = In {K ((∂Vx / ∂y)^(n-1))}

In η = In K + In ((∂Vx / ∂y)^(n-1))

In η = In K + (n-1) In (∂Vx / ∂y)

In η = (n-1) In (∂Vx / ∂y) + In K

-Compare this relation to the equation of a straight line, y = mx + C

y = In η

m = (n-1)

x = In (∂Vx / ∂y)

C = In K

So, the data missing must be for the Viscosity, η and the shear rate, ∂Vx / ∂y

- First step in the data treatment is to take the natural logarithm of these data sets.

- This leads to a new table of data with In η and In (∂Vx / ∂y).

- Plot this new set of data on a graph with In η on the y-axis and In (∂Vx / ∂y) on the x-axis.

- The slope of this graph, m = (n-1) from the power law relation. Therefore, n = slope + 1

- And the intercept on the y-axis, c = In K, that is, K = (e^c)

So, there goes the answers to the questions, n and K.

n has no units and K has varying units depending on the value of n.