Respuesta :

Answer:

V₂  =541.94 m L.

Explanation:

Given that

V₁ = 500 mL  

T₁ = 25°C  = 273 + 25 = 298 K

T₂ = 5°C = 273+50 =323  K

The final volume = V₂  

We know that ,the ideal gas equation  

If the pressure of the gas is constant ,then we can say that

[tex]\dfrac{V_2}{V_1}=\dfrac{T_2}{T_1}[/tex]

[tex]\dfrac{V_2}{V_1}=\dfrac{T_2}{T_1}[/tex]

Now by putting the values in the above equation we get

[tex]V_2=500\times \dfrac{323}{298}\ mL\\V_2=541.94\ mL[/tex]

The final volume of the balloon will be 541.94 m L.

V₂  =541.94 m L.

The final volume of the balloon will be "541.94 mL".

Given:

Volume,

  • [tex]V_1 = 500 \ mL[/tex]

Temperature,

  • [tex]T_1 = 25^{\circ} C[/tex]

            [tex]= 273+25[/tex]

            [tex]= 298 \ K[/tex]

  • [tex]T_2 = 5^{\circ} C[/tex]

             [tex]=273+50[/tex]

             [tex]=323 \ K[/tex]

By using the Ideal gas equation, we get

→ [tex]\frac{V_2}{V_1} = \frac{T_2}{T_1}[/tex]

or,

→ [tex]V_2 = \frac{T_2\times V_1}{T_1}[/tex]

       [tex]= \frac{500\times 323}{298}[/tex]

       [tex]= 541.94 \ mL[/tex]

Thus the above approach is correct.  

Learn more:

https://brainly.com/question/23297416