Respuesta :
Answer:
i) Δs = 196 - 144 = 52 feet
ii) Δs / Δt = 104 feet/second
iii) Therefore the velocity at t = 3 is v(3) = 96 feet/second
Step-by-step explanation:
a.) i) s = [tex]16t^{2}[/tex]
ii) at 3 seconds the distance traveled [tex]s(3) = 16\times (3)^2\hspace{0.2cm} = 16 \times 9 = 144 feet[/tex]
iii) at 3.5 seconds the distance traveled [tex]s(3.5) = 16\times (3.5)^2\hspace{0.2cm} = 16 \times 12.25 = 196 feet[/tex]
iv) Δs = 196 - 144 = 52 feet
b) Average velocity over [3, 3.5] = Δs / Δt = 52/(0.5) = 104 feet/second
c) the average velocity over the interval
I) i) [3, 3.01]
ii) [tex]s(3.01) = 16\times (3.01)^2\hspace{0.2cm} = 16 \times 9.0601 = 144.962 feet[/tex]
iii) Δs = 144.962 - 144 = 0.962 feet
iv) Average velocity over [3, 3.01] = Δs / Δt = 0.962/(0.01) =
96.2 feet/second
II) i) [3, 3.001]
ii) [tex]s(3.001) = 16\times (3.001)^2\hspace{0.2cm} = 16 \times 9.006001 = 144.096 \hspace{0.1cm} feet[/tex]
iii) Δs = 144.096 - 144 = 0.096 feet
iv) Average velocity over [3, 3.001] = Δs / Δt = 0.096/(0.001) =
96 feet/second
III) i) [3, 3.0001]
ii) [tex]s(3.0001) = 16\times (3.0001)^2\hspace{0.2cm} = 16 \times 9.00060001 = 144.0096 \hspace{0.1cm} feet[/tex]
iii) Δs = 144.0096 - 144 = 0.0096 feet
iv) Average velocity over [3, 3.0001] = Δs / Δt = 0.0096/(0.0001) =
96 feet/second
IV) i) [2.9999, 3]
ii) [tex]s(2.9999) = 16\times (2.9999)^2\hspace{0.2cm} = 16 \times 8.9994 = 143.99\hspace{0.1cm} feet[/tex]
iii) Δs = 144 - 143.99 = 0.0096 feet
iv) Average velocity over [2.9999, 3] = Δs / Δt = 0.0096/(0.0001) =
96 feet/second
V) i) [2.999, 3]
ii) [tex]s(2.999) = 16\times (2.999)^2\hspace{0.2cm} = 16 \times 8.994 = 143.904\hspace{0.1cm} feet[/tex]
iii) Δs = 144 - 143.904 = 0.09598 feet
iv) Average velocity over [2.999, 3] = Δs / Δt = 0.09598/(0.001) =
95.98 feet/second
VI) i) [2.99, 3]
ii) [tex]s(2.99) = 16\times (2.99)^2\hspace{0.2cm} = 16 \times 8.94 = 143.0416\hspace{0.1cm} feet[/tex]
iii) Δs = 144 - 143.042 = 0.098 feet
iv) Average velocity over [2.99, 3] = Δs / Δt = 0.098/(0.01) =
98 feet/second
Therefore the velocity at t = 3 is v(3) = 96 feet/second