contestada

The vapor pressure of cobalt is 400 mm Hg at 3.03x10^3 K.

Assuming that its molar heat of vaporization is constant at 450 kJ/mol, the vapor pressure of liquid Co is _____ mm Hg at a temperature of 3.07x10^3 K.

Respuesta :

Answer:

The final vapor pressure is 687.24mmHg

Explanation:

The clausius-clapeyron equation below will be used to solve this problem:

[tex]ln\frac{P_2}{P_1} =\frac{\delta H}{R}(\frac{1}{T_1}-\frac{1}{T_2})[/tex]

Where;

ΔH is heat of vaporization = 450 kJ/mol = 450000J/mol

initial vapor pressure P₁ = 400mmHg

initial temperature T₁ = 3030K

Final temperature T₂ = 3070K

R is ideal gas constant = 8.314 J/molK

final vapor pressure P₂ = ?

[tex]ln\frac{P_2}{400} =\frac{450000}{8.314}(\frac{1}{3030}-\frac{1}{3070})[/tex]

[tex]ln\frac{P_2}{400} =(54125.57)(0.00001)[/tex]

[tex]ln\frac{P_2}{400} =(0.5412557)[/tex]

[tex]\frac{P_2}{400} = e^{(0.5412557)}[/tex]

P₂/400 = 1.7181

P₂ = (400*1.7181)mmHg

P₂ = 687.24mmHg

The final vapor pressure is 687.24mmHg