F1 = (3.3,-0.5) and F2 = (-3.8,-0.3) where all components are in newtons. What angle does the vector F1 + F2 make with the positive x-axis? The angle is measured counterclockwise from the positive x-axis and must be in the range from 0 to 360 degrees.

Respuesta :

Answer:

238 Degree

Explanation:

Data given

F1=(3.3,-0.5) and F2=(-3.8,-0.3).

To determine the angle F1+F2 makes with the positive x-axis, we need to determine the magnitude of the force F1+F2.

Since force is a vector quantity, we add the vectors component by component

[tex]F_{1}+F_{2}=<3.3,-0.5> +<-3.8,-0.3>\\F_{1}+F_{2}=<3.3+(-3.8), -0.5+(-0.3)>\\ F_{1}+F_{2}=<-0.5,-0.8>\\F_{1}+F_{2}=(-0.5,-0.8)[/tex]

To determine the angle, we use

[tex]F=(x,y)\\\alpha=arctan(\frac{y}{x} )\\Hence for \\F_{1}+F_{2}=(-0.5,-0.8)\\\alpha=arctan(\frac{-0.8}{-0.5} )\\\alpha=58^{0}[/tex]

Since the component of the force F1+F2 is a negative y and negative x which are located in the  3rd quadrant,  the angle can be calculated as

∝=58+180=238 degree

Hence The angle is measured counterclockwise from the positive x-axis and must be in the range from 0 to 360 degrees is 238 Degree

The angle measured counterclockwise from the positive x-axis is θ = 57.99°

Finding the direction of the force.

Here we know that:

  • F1 = (3.3, -0.5)
  • F2 = (-3.8, -0.3)

First, we need to add the forces, we will get:

F1 + F2 =  (3.3, -0.5) + (-3.8, -0.3) = (3.3 - 3.8, -0.5 - 0.3))

F1 + F2 = (-0.5, -0.8)

Now, the angle measured counterclockwise from the positive x-axis of a vector

(a, b) is given by:

θ = Atan(b/a).

Where Atan(x) is the inverse tangent function.

So in this case the angle will be:

θ = Atan(-0.8/-0.5) = 57.99°

If you want to learn more about vectors, you can read:

https://brainly.com/question/3184914

Otras preguntas