Answer:
a) 25.5°(south of east)
b) 119 s
c) 238 m
Explanation:
solution:
we have river speed [tex]v_{r}[/tex]=2 m/s
velocity of motorboat relative to water is [tex]v_{m/r}[/tex]=4.2 m/s
so speed will be:
a) [tex]v_{m}[/tex]=[tex]v_{r}[/tex]+[tex]v_{m/r}[/tex]
solving graphically
[tex]v_{m}=\sqrt{v^2_{r}+v^2_{m/r}}[/tex]
=4.7 m/s
Ф=[tex]tan^{-1} (\frac{v_{r}}{v_{m/r}} )[/tex]
=25.5°(south of east)
b) time to cross the river: t=[tex]\frac{w}{v_{m/r}}[/tex]=[tex]\frac{500}{4.2}[/tex]=119 s
c) d=[tex]v_{r}t[/tex]=(2)(119)=238 m
note :
pic is attached