Answer:
A) [tex]k=34867.3384\ N.m^{-1}[/tex]
B) [tex]\omega'\approx84\ Hz[/tex]
Explanation:
Given:
mass of car, [tex]m=1380\ kg[/tex]
A)
frequency of spring oscillation, [tex]f=1.6\ Hz[/tex]
We knkow the formula for spring oscillation frequency:
[tex]\omega=2\pi.f[/tex]
[tex]\Rightarrow \sqrt{\frac{k_{eq}}{m} } =2\pi.f[/tex]
[tex]\sqrt{\frac{k_{eq}}{1380} } =2\times \pi\times 1.6[/tex]
[tex]k_{eq}=139469.3537\ N.m^{-1}[/tex]
Now as we know that the springs are in parallel and their stiffness constant gets added up in parallel.
So, the stiffness of each spring is (as they are identical):
[tex]k=\frac{k_{eq}}{4}[/tex]
[tex]k=\frac{139469.3537}{4}[/tex]
[tex]k=34867.3384\ N.m^{-1}[/tex]
B)
given that 4 passengers of mass 70 kg each are in the car, then the oscillation frequency:
[tex]\omega'=\sqrt{\frac{k_{eq}}{(m+70\times 4)} }[/tex]
[tex]\omega'=\sqrt{\frac{139469.3537}{(1380+280)} }[/tex]
[tex]\omega'\approx84\ Hz[/tex]