The increasing annual cost (including tuition, room, board, books, and fees) to attend college has been widely discussed (Time.com). The following random samples show the annual cost of attending private and public colleges. Data are in thousands of dollars.

Private Colleges
53.8 42.2 44.0 34.3 44.0
31.6 45.8 38.8 50.5 42.0
Public Colleges
20.3 22.0 28.2 15.6 24.1 28.5
22.8 25.8 18.5 25.6 14.4 21.8
(a)

Compute the sample mean (in thousand dollars) and sample standard deviation (in thousand dollars) for private colleges. (Round the standard deviation to two decimal places.)

sample mean $ thousand sample standard deviation $ thousand

Compute the sample mean (in thousand dollars) and sample standard deviation (in thousand dollars) for public colleges. (Round the standard deviation to two decimal places.)

sample mean $ thousand sample standard deviation $ thousand

Respuesta :

Answer:

A) Private colleges:

mean = 42.7, SD = 6.72

In thousand dollars:

mean =  $42700, SD= $6720

B) Public colleges:

mean = 22.3, SD = 4.53

In thousand dollars:

mean =  $22300, SD= $4530

Step-by-step explanation:

A) Private Colleges:

Mean:

Total no. of samples = n =10

Sample values in dollar = x= [53.8, 42.2, 44.0, 34.3, 44.0,31.6, 45.8, 38.8, 50.5, 42.0]

Sum of samples = ∑x= 427

[tex]sample\,\,mean = \bar{x} =\frac{\sum x}{n}\\\\\bar{x}=\frac{427}{10}\\\\\bar{x}=42.7\\[/tex]

Sample mean in thousand dollars is $ 42700.

Standard Deviation:

Formula for standard deviation of sample data is

[tex]\sigma=\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_{i}-\bar{x})^2}\\\\\sum(x_i-\bar{x})^2=(53.8-42.7)^2+(42.2-42.7)^2+...+(42.0-42.7)^2\\\\\sum(x_i-\bar{x})^2=123.21+0.25+ 1.69+ 70.56+ 1.69+ 123.21+ 9.61+ 15.21+60.84+0.49\\\\\sum(x_i-\bar{x})^2=406.67\\\\\sigma=\sqrt{\frac{406.67}{9}}\\\\\sigma=6.72[/tex]

Standard deviation in thousand dollars is $ 6720.

B) Public Colleges:

Mean:

Total no. of samples = n =12

Sample values in dollar = x= [20.3, 22.0, 28.2, 15.6, 24.1, 28.5,22.8, 25.8, 18.5, 25.6, 14.4, 21.8]

Sum of samples = ∑x= 267.6

[tex]sample\,\,mean = \bar{x} =\frac{\sum x}{n}\\\\\bar{x}=\frac{267.6}{12}\\\\\bar{x}=22.3\\[/tex]

Sample mean in thousand dollars is $ 22300.

Standard Deviation:

[tex]\sigma=\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_{i}-\bar{x})^2}\\\\\sum(x_i-\bar{x})^2=(20.3-22.3)^2+(22.0-22.3)^2+...+(21.8-22.3)^2\\\\\sum(x_i-\bar{x})^2=4+ 0.09+34.81+ 44.89+ 3.24+ 38.44+0.25+ 12.25+14.44+10.89+62.41+0.25\\\\\sum(x_i-\bar{x})^2=225.96\\\\\sigma=\sqrt{\frac{225.96}{11}}\\\\\sigma=4.53[/tex]

Standard deviation in thousand dollars is $ 4530.