Answer: [tex]25.5 m^{3}[/tex]
Step-by-step explanation:
If the volume of a sphere is
[tex]V=\frac{4}{3} \pi r^{3}[/tex]
Where [tex]r=2.3 m[/tex] is the radius
The volume of a hemisphere is half the volume of the total sphere:
[tex]V_{hemisphere}=\frac{V}{2}=\frac{\frac{4}{3} \pi r^{3}}{2}[/tex]
[tex]V_{hemisphere}=\frac{2}{3} \pi r^{3}[/tex]
Solving this equation:
[tex]V_{hemisphere}=\frac{2}{3} \pi (2.3 m)^{3}[/tex]
Finally:
[tex]V_{hemisphere}=25.48m^{3} \approx 25.5 m^{3}[/tex]