Respuesta :

Answer: [tex]25.5 m^{3}[/tex]

Step-by-step explanation:

If the volume of a sphere is

[tex]V=\frac{4}{3} \pi r^{3}[/tex]

Where [tex]r=2.3 m[/tex] is the radius

The volume of a hemisphere is half the volume of the total sphere:

[tex]V_{hemisphere}=\frac{V}{2}=\frac{\frac{4}{3} \pi r^{3}}{2}[/tex]

[tex]V_{hemisphere}=\frac{2}{3} \pi r^{3}[/tex]

Solving this equation:

[tex]V_{hemisphere}=\frac{2}{3} \pi (2.3 m)^{3}[/tex]

Finally:

[tex]V_{hemisphere}=25.48m^{3} \approx 25.5 m^{3}[/tex]