Respuesta :
Answer:
Therefore [tex](\frac{46}{59},-\frac{62}{59} )[/tex] is a solution of given liner equations.
Step-by-step explanation:
Given system of equation are
7x+9y=-4..............(1)
5x-2y=6...............(2)
Equation (1)×5 - equation (2)×7
35x +45y-(35x-14y)= -20-42
⇔ 35x+45y-35x+14y = -62
⇔59 y = -62
[tex]\Leftrightarrow y =-\frac{62}{59}[/tex]
Putting the value of y in equation (1)
[tex]7x +9.(-\frac{62}{59} )= -4[/tex]
[tex]\Leftrightarrow 7x += -4+\frac{558}{59}[/tex]
[tex]\Leftrightarrow 7x = \frac{322}{59}[/tex]
[tex]\Leftrightarrow x =\frac{322}{59\times 7}[/tex]
[tex]\Leftrightarrow x =\frac{46}{59}[/tex]
Therefore [tex]x =\frac{46}{59}[/tex] and [tex]y =-\frac{62}{59}[/tex]
Therefore [tex](\frac{46}{59},-\frac{62}{59} )[/tex] is a solution of given liner equations.
Answer:
D.)He made a mistake in his calculations when substituting the ordered pair into the equation 5x – 2y = 6 and simplifying.
Step-by-step explanation:
I just got this right for the exam review on edge