Answer:
[tex]s=5.79\ km[/tex]
[tex]\theta=47^{\circ}[/tex] east of south
Explanation:
Given:
Now refer the schematic for visualization of situation:
[tex]y=d'.\sin47^{\circ}-d[/tex]
[tex]y=8.4\times \sin47-5.3[/tex] ...............(1)
[tex]x=d'.\cos47^{\circ}[/tex]
[tex]x=8.4\times \cos47^{\circ}[/tex] .................(2)
Now the direction of the desired position with respect to south:
[tex]\tan\theta=\frac{y}{x}[/tex]
[tex]\tan\theta=\frac{8.4\times \sin47}{8.4\times \cos47}[/tex]
[tex]\theta=47^{\circ}[/tex] east of south
Now the distance from the current position to the desired position:
[tex]s=\sqrt{x^2+y^2}[/tex]
[tex]s=\sqrt{(8.4\times \cos47)^2+(8.4\times \sin47-5.3)^2}[/tex]
[tex]s=5.79\ km[/tex]