Respuesta :

The solutions to quadratic equation are x = 1 and x = -8

Solution:

Given quadratic equation is:

[tex]x^2+7x = 8\\\\x^2 + 7x-8 = 0[/tex]

We have to find the solutions of equation

[tex]\mathrm{Quadratic\:Equation\:Formula:}\\\\\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\text{Compare the given } x^2 + 7x - 8 = 0 \text{ with } ax^2 + bx + c = 0\\\\We\ get\\\\a = 1\\\\b = 7\\\\c = -8[/tex]

[tex]x=\frac{-7\pm \sqrt{7^2-4\cdot \:1\left(-8\right)}}{2\cdot \:1}\\\\x =\frac{-7 \pm \sqrt{7^2+4\cdot \:1\cdot \:8}}{2\cdot \:1}\\\\x = \frac{-7 \pm \sqrt{49 + 32}}{2}\\\\Simplify\ the\ equation\\\\x = \frac{-7 \pm \sqrt{81}}{2}\\\\x = \frac{-7 \pm 9}{2}[/tex]

Thus we get two solutions:

[tex]x = \frac{-7+9}{2} \text{ and } x = \frac{-7-9}{2}\\\\x = 1 \text{ and } x = -8[/tex]

Thus the solutions to quadratic equation are x = 1 and x = -8

Answer:

1, -8

Step-by-step explanation: