In a first order decomposition in which the rate constant is 0.0808 sec-1, how long will it take (in minutes) until 0.358 mol/L of the compound is left, if there was 0.52 mol/L at the start? (give answer to 3 decimal places)?

Respuesta :

Answer:

t = 4.62 sec        

Explanation:

For every first order reaction the rate constant K is given as

           [tex]k =(\frac{2.303}{t} )log\frac{[A_{o} ]}{[A]}[/tex]

        [tex][A_{o} ] = initial concentration = 0.52\frac{mol}{L}[/tex]

       [tex][A] =final concentration = 0.358 \frac{mol}{L}[/tex]

         [tex]K = 0.0808 sec^{-1}[/tex]

      [tex]t = (\frac{2.303}{K} ) log (\frac{[A_{o} ]}{[A]} )[/tex]

         [tex]= (\frac{2.303}{0.0808} )log (\frac{0.52}{0.358} )[/tex]

        t = 4.62 sec

       

Answer:0.0771mins

Explanation:The first order rate law eqn =Ca=Caoe^-kt

Ca=final mass remaining

Cap=initial mass

K=rate or decay constant

t=time

e=exponential

ca=0.358

cao=0.52

K=0.0808/sec

Substituting,we have

0.358=0.52e^-0.0808t

0.358/0.52=e^-0.0808t

0.688=e^-0.0808t

Taking naturaing logarithm of both sides(ln of both sides)

ln(0.688)=-0.0808t

-0.3739=-0.0808t

t=0.3739/0.0808

t=4.628secs

In mins,4.628/60=0.0771mins.