Respuesta :

Answer:

The greatest area possible is 729[tex]inch^{2}[/tex]

Step-by-step explanation:

i) If a = [tex]-w^{2} + 54w[/tex] where w is the width of the picture frame

  differentiating on both sides we get

  [tex]\frac{da}{dw} = -2w + 54[/tex]

Differentiating the above again on both sides we get   [tex]\frac{d^2a}{dw^2}[/tex]  = -2

 Since the second order derivative is negative then we can get the solution for the maximum area by equating the fist order derivative equation to 0.

 Therefore -2w + 54 = 0     therefore w  = 27.

ii) If we substitute w = 27 into the equation in ii) we get

   a  = [tex]-(27)^2 +(54\times 27)[/tex] = (54 - 27) [tex]\times[/tex](27)  = [tex]27^{2}[/tex] = 729