The following data represent the number of people aged 25 to 64 years covered by health insurance (private or government) in 2018. Approximate the mean and standard deviation for age.
Age: 25-34. 35-44. 45-54. 55-64
Number 22.1. 31.5. 37.7. 25.3
(Millions)

Respuesta :

Answer:

Mean  = 45.178

Standard Deviation = 10.33

Step-by-step explanation:

class                m              frequency, f           m [tex]\times[/tex] f            f [tex]\times[/tex] [tex]m^{2}[/tex]      

25 - 34          29.5                22.1                   651.95         19232.525

35 - 44           39.5                31.5                  1244.25        49147.875

45 - 54           49.5                37.7                  1866.15        92374.425

55 - 64            59.5               25.3                 1505.35        89568.352

                                          116.6                    5267.7           250323.15

mean = [tex]\frac{5267.7}{116.6} = 45.178[/tex]      standard deviation  = [tex]\sqrt{\frac{250323.15 - \frac{(5267.7)^2}{116.6} }{(116.1 - 1)} } = 10.33[/tex]

                                       

The mean of a distribution is the average of the distribution ; it is the sum of observation divided by the count of the observation.

  • The mean age is 45.18
  • The standard deviation is 10.29

Given that:

[tex]\begin{array}{ccccc}{Age}&25-34&35-44&45-45&55-64\\{Number}&22.1&31.5&37.7&25.3\end{array}[/tex]

First, we calculate midpoint of each class.

This is the sum of the class interval divided by 2.

So, we have:

[tex]x_1 = \frac{25+34}{2} = 29.5[/tex]

[tex]x_2 = \frac{35+44}{2} = 39.5[/tex]

And so on...

The table becomes:

[tex]\begin{array}{ccccc}{Age}&25-34&35-44&45-45&55-64&{Number(f)}&22.1&31.5&37.7&25.3&{x}&29.5&39.5&49.5&59.5\end{array}[/tex]

The mean of the distribution is:

[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]

[tex]\bar x = \frac{29.5 \times 22.1 + 39.5 \times 31.5 + 49.5 \times 37.7 +59.5 \times 25.3}{22.1 + 31.5 + 37.7 +25.3}[/tex]

[tex]\bar x = \frac{5267.7}{116.6}[/tex]

[tex]\bar x = 45.18[/tex]

The standard deviation is calculated as follows:

[tex]\sigma = \sqrt{\frac{\sum f(x - \bar x)^2}{\sum f}}[/tex]

[tex]\sigma= \sqrt{\frac{(29.5 - 45.1)^2\times 22.1 + (39.5 - 45.1)^2 \times 31.5 + (49.5 - 45.1)^2 \times 37.7 + (59.5 - 45.1)^2 \times 25.3}{22.1 + 31.5 + 37.7 +25.3}}[/tex]

[tex]\sigma= \sqrt{\frac{12342.176}{116.6}}[/tex]

[tex]\sigma= \sqrt{105.85}[/tex]

[tex]\sigma= 10.29[/tex]

Hence:

  • The mean age is 45.18
  • The standard deviation is 10.29

Read more about mean and standard deviation at:

https://brainly.com/question/10729938