Respuesta :

Answer:

i) Therefore option A is Correct.   Δ ECD   [tex]\sim[/tex] Δ ACB by the SAS ( Side Angle Side) Similarity Theorem.

ii) Yes it can be proven that ED || AB after proving that Δ ECD   [tex]\sim[/tex] Δ ACB

Step-by-step explanation:

i) CE = [tex]\frac{1}{2}[/tex] AC ..... given

ii)  CD =  [tex]\frac{1}{2}[/tex] CB .... given

iii)  Therefore [tex]\frac{CE}{AC} = \frac{CD}{CB} = \frac{1}{2}[/tex]

iv)  Angle ACB or ∠C is common to Δ ACB and Δ CED.

v) Therefore from the above 4 equations we can say that by

   SAS theorem the two triangles are similar , that is ,  Δ ECD   [tex]\sim[/tex] Δ ACB .

 Therefore option A is Correct.

 vi)  Yes it can be proven that ED || AB after proving that Δ ECD   [tex]\sim[/tex] Δ ACB.

Since Δ ECD   [tex]\sim[/tex] Δ ACB , therefore ∠CED = ∠CAB  and ∠CDE = ∠CBA.

Therefore we can say that ED is parallel to AB or that ED || AB.