Answer:
Cost of each cherry pie = $6
Cost of each blackberry pie = $16
Step-by-step explanation:
Let x be the cherry pies and y be the blackberry pie.
Solution:
From the above statement Jasmine sold 12 cherry pies and 4 blackberry pies for a total of $136.
So, we write the first equation as.
[tex]12x+4y = 136 ------(1)[/tex]
And Stephanie sold 8 cherry pies and 1 blackberry pie for a total of $64.
So, we write the second equation as.
[tex]8x+y = 64 --------(2)[/tex]
First we solve equation 2 for y.
[tex]y = 64-8x[/tex] ------------------------(3)
Substitute [tex]y = 64-8x[/tex] in equation 1.
[tex]12x+4(64-8x) = 136[/tex]
[tex]12x+256-32x=136[/tex]
[tex]12x-32x=136-256[/tex]
[tex]-20x=-120[/tex]
[tex]x=\frac{120}{20}[/tex]
x = 6
Substitute x = 6 in equation 3.
[tex]y = 64-8(6)[/tex]
[tex]y=64-48[/tex]
y = 16
Therefore, cost of each cherry pie = $6 and cost of each blackberry pie = $16