Respuesta :

Answer:

The given sum expressed in sigma notation is

[tex]\sum\limits_{i=1}^{5}4^{i-4}[/tex]

Therefore [tex]\sum\limits_{i=1}^{5}4^{i-4}=\frac{1}{64}+\frac{1}{16}+\frac{1}{4}+1+4[/tex]

Step-by-step explanation:

Given series is [tex]\frac{1}{64}+\frac{1}{16}+\frac{1}{4}+1+4[/tex]

The given sum expressed in sigma notation is

[tex]\sum\limits_{i=1}^{5}4^{i-4}[/tex]

  • Now verify that the sigma notation [tex]\sum\limits_{i=1}^{5}4^{i-4}[/tex] is correct or not
  • Now expand the series
  • [tex]\sum\limits_{i=1}^{5}4^{i-4}=4^{1-4}+4^{2-4}+4^{3-4}+4^{4-4}+4^{5-4}[/tex]  
  • [tex]=4^{-3}+4^{-2}+4^{-1}+4^{0}+4^{1}[/tex]  ( using the properties [tex]a^{-m}=\frac{1}{a^m}[/tex] and [tex]a^0=1[/tex] )
  • [tex]=\frac{1}{4^3}+\frac{1}{4^2}+\frac{1}{4^1}+1+4[/tex]
  • [tex]=\frac{1}{64}+\frac{1}{16}+\frac{1}{4}+1+4[/tex]

Therefore

[tex]\sum\limits_{i=1}^{5}4^{i-4}=\frac{1}{64}+\frac{1}{16}+\frac{1}{4}+1+4[/tex]

  • Hence verified

Answer:

Option 2

Step-by-step explanation:

1/64 = 4^-3

1/16 = 4^-2

1/4 = 4^-1

1 = 4^0

4 = 4^1