Identify the zeros of f(x) = (x + 9)(x − 4)(6x + 1).
−9, −1 over 6,4
9, 1 over 6, 4
−9, −1 over 6,−4
−9, 1 over 6, −4

Respuesta :

The required 'option a)  - 9 , [tex]\dfrac{-1}{6}[/tex], 4' is correct.

Step-by-step explanation:

We have,

f(x) = (x + 9)(x − 4)(6x + 1)

To find, all zeroes of the given equation = ?

f(x) = (x + 9)(x − 4)(6x + 1)

⇒ (x + 9)(x − 4)(6x + 1) = 0

⇒ x + 9 = 0 or, x − 4 = 0 or, 6x + 1 = 0

⇒ x + 9 = 0 ⇒  x = - 9

⇒ x − 4 = 0 ⇒ x = 4

⇒ 6x + 1 = 0

⇒ 6x = - 1

⇒ x = [tex]\dfrac{-1}{6}[/tex]

∴ x = - 9 , [tex]\dfrac{-1}{6}[/tex], 4

Thus, the required 'option a)  - 9 , [tex]\dfrac{-1}{6}[/tex], 4' is correct.

Answer:

The required 'option a)  - 9 , , 4' is correct.

Step-by-step explanation:

We have,

f(x) = (x + 9)(x − 4)(6x + 1)

To find, all zeroes of the given equation = ?

∴ f(x) = (x + 9)(x − 4)(6x + 1)

⇒ (x + 9)(x − 4)(6x + 1) = 0

⇒ x + 9 = 0 or, x − 4 = 0 or, 6x + 1 = 0

⇒ x + 9 = 0 ⇒  x = - 9

⇒ x − 4 = 0 ⇒ x = 4

⇒ 6x + 1 = 0

⇒ 6x = - 1

⇒ x =

∴ x = - 9 , , 4

Thus, the required 'option a)  - 9 , , 4' is correct.

HOPE THIS HELPS! :]