Hi, does anyone know how to solve this. If so, please show the working out too. Thanks.

See the explanation
I have corrected your diagram so ∅ is the angle at the top of the diagram. In order to solve this problem we have to use Pythagorean theorem and the law of sines. Moreover, I have named two sides as w and z so those variables will help us to solve this problem. So:
The triangle at the bottom is right, so by Pythagorean theorem is true that:
[tex]w^2=4^2+(2\sqrt{2})^2 \\ \\ w^2=24 \\ \\ w=\sqrt{24} \\ \\ w=2\sqrt{6}[/tex]
By law of sines:
[tex]\frac{z}{sin\theta}=\frac{w}{sin60^{\circ}} \\ \\ z=\frac{wsin\theta}{sin60^{\circ}} \\ \\ z=\frac{2\sqrt{6}sin\theta}{\sqrt{3}/2} \\ \\ z=4\sqrt{2}sin\theta[/tex]
By law of sines again:
[tex]\frac{y}{sin45^{\circ}}=\frac{z}{sin\phi} \\ \\ y=\frac{zsin45^{\circ}}{sin\phi} \\ \\ y=\frac{4\sqrt{2}sin\theta \sqrt{2}/2}{sin\phi} \\ \\ \\ Finally: \\ \\ \boxed{y=\frac{4sin\theta}{sin\phi}}[/tex]
Classification of triangles: https://brainly.com/question/10379190
#LearnWithBrainly