Respuesta :

PSN03

Yo sup??

For our convenience let h=x+1

therefore

when x tends to -1, h tends to 0

hence we can rewrite it as

[tex]\lim_{h \to \ 0 } (cos(h))^{(cot(h^2 )}[/tex]

This inequality is of the form 1∞

We will now apply the formula

[tex]e^(^g^(^x^)^(^f^(^x^)^-^1^)^)[/tex]

plugging in the values of g(x) and f(x)

[tex]e^{lim_{h \to \ 0}{(cot(h)^2(cos(h)-1))}[/tex]

express coth² as cosh²/sinh² and also write cosh-1 as 2sin²(h/2)

(by applying the property that cos2x=1-sin²x)

After this multiply the numerator and denominator with h² so that we can apply the property that

[tex]\lim_{x \to \ 0 } sinx/x =1[/tex]

Now your equation will look like this.

[tex]e^{lim_{h \to \ 0}{((cos(h)^2(2sin^2(h/2)*h^2)/(sin(h)^2*h^2)}[/tex]

We will now apply the result

[tex]\lim_{x \to \ 0 } sinx/x =1[/tex]

where x=h²

we get

[tex]e^{lim_{h \to \ 0}{((cos(h)^2(2sin^2(h/2))/(h^2)}[/tex]

we now multiply the numerator and denominator with 4 so that we can say

[tex]\lim_{h^2 \to \ 0 } sin^2(h/2)/(h^2/4) = 1[/tex]

[tex]e^{lim_{h \to \ 0}{((cos(h)^2(2sin^2(h/2))/(h^2*4/4)}[/tex]

[tex]=e^{lim_{h \to \ 0}{((cos(h)^2*2)/(4)}[/tex]

Apply the limits and you will get

[tex]e^{cos(0)^2*2/4[/tex]

[tex]=e^{1/2}[/tex]

Hope this helps.