Answer:
(1) Correct option is (A)
(2) P (H or G) = 0.80
(3) Correct option is (C)
Step-by-step explanation:
Mutually exclusive events are those events that cannot occur at same time.
If events A and B are mutually exclusive then, P (A and B) = 0.
Given: P (G) = 0.50 and P (H) = 0.30
(1)
The statement is: P (H|G) = 0.40.
The conditional probability of event B given event A is:
[tex]P(B|A)=\frac{P(A\cap B)}{P(A)}[/tex]
The probability statement P (H|G) can be written as:
[tex]P(H|G)=\frac{P(H\cap G)}{P(G)}[/tex]
But as H and G are mutually exclusive, P (H ∩ G) = 0.
Hence, P (H|G) = 0.
Thus, the provided statement is false because events H and G are mutually exclusive, which makes P(H ∩ G) = 0.
Option (A) is correct.
(2)
The addition rule of probability states that:
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
Compute the value of P (H or G) as follows:
[tex]P(H\cup G)=P(H)+P(G)-P(H\cap G\\=0.30+0.50-0\\=0.80[/tex]
Thus, the value of P (H or G) is 0.80.
(3)
Independent events are those events that are not affected by the occurrence of other events.
Events H and G are mutually exclusive events, i.e. occurrence of one affects the occurrence of other.
Thus, events H and G are dependent events.
Option (C) is correct.