Answer: Concentration of [tex]CO[/tex] = 0.328 M
Concentration of [tex]Cl_2[/tex] = 0.328 M
Concentration of [tex]COCl_2[/tex] = 0.532 M
Explanation:
Moles of [tex]CO[/tex] and [tex]Cl_2[/tex] = 0.430 mole
Volume of solution = 0.500 L
Initial concentration of [tex]CO[/tex] and [tex]Cl_2[/tex] =[tex]\frac{moles}{volume}=\frac{0.430}{0.500}=0.860M[/tex]
The given balanced equilibrium reaction is,
[tex]CO(g)+Cl_2(g)\rightleftharpoons COCl_2(g)[/tex]
Initial conc. 0.860M 0.860M 0
At eqm. conc. (0.860-x) M (0.860-x) M (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[COCl_2]}{[CO][Cl_2]}[/tex]
Now put all the given values in this expression, we get :
[tex]4.95=\frac{x}{(0.860-x)^2}[/tex]
By solving the term 'x', we get :
x = 0.532 M
Thus, the concentrations of [tex]CO,Cl_2\text{ and }COCl_2[/tex] at equilibrium are :
Concentration of [tex]CO[/tex] = (0.860-x) M =(0.860-0.532) M = 0.328 M
Concentration of [tex]Cl_2[/tex] = (0.860-x) M = (0.860-0.532) M = 0.328 M
Concentration of [tex]COCl_2[/tex] = x M = 0.532 M