Respuesta :
To solve this problem we will apply the concepts related to wavelength as the rate of change of the speed of the wave over the frequency. Mathematically this is
[tex]\lambda = \frac{v}{f}[/tex]
Here,
v = Wave velocity
f = Frequency,
Replacing with our values we have that,
[tex]\lambda = \frac{340}{500}[/tex]
\lambda = 0.68m
The distance to move one speaker is half this
[tex]\lambda/2 = 0.34m[/tex]
Therefore the minimum distance will be 0.34m
The minimum distance that one of the speakers should be moved back away from the listener to produce destructive interference at the listener's ear is; Δ = 0.34 m
The formula for wavelength here as it relates to speed and frequency is given as;
λ = v/f
Where;
λ is wavelength
v is speed
f is frequency
We are given;
Frequency; f = 500 Hz
Speed of sound; v = 340 m/s
Thus;
λ = 340/500
λ = 0.68 m
Now, we are told that the line separating them creates a constructive interference at the listeners ear. Thus;
To calculate the minimum distance would one of the speakers be moved back away from the listener to produce destructive interference at the listener's ear we will use the formula;
formula for destructive path length is;
Δ = (m + ½)λ
And m here is zero
Thus;
Δ = ½λ
Δ = 0.68/2
Δ = 0.34 m
Read more at; https://brainly.com/question/14718577