Answer:
934701926.438 Hz
Explanation:
Mass of molecule
[tex]m=3\times 16\times 1.67\times 10^{-27}\ kg[/tex]
Moment of inertia is given by
[tex]I=\dfrac{1}{12}ml^2\\\Rightarrow I=\dfrac{1}{12}\times 3\times 16\times 1.67\times 10^{-27}\times (2.5\times 10^{-10})^2\\\Rightarrow I=4.175\times 10^{-46}\ kgm^2[/tex]
E = Electric field = 8000 N/C
p = Dipole moment = [tex]1.8\times 10^{-30}\ Cm[/tex]
l = Length of rod = [tex]2.5\times 10^{-10}\ m[/tex]
Frequency of oscillations is given by
[tex]f=\dfrac{1}{2\pi}\sqrt{\dfrac{pE}{I}}\\\Rightarrow f=\dfrac{1}{2\pi}\sqrt{\dfrac{1.8\times 10^{-30}\times 8000}{4.175\times 10^{-46}}}\\\Rightarrow f=934701926.438\ Hz[/tex]
The frequency of oscillations is 934701926.438 Hz